66 research outputs found

    The importance of thermodynamics for molecular systems, and the importance of molecular systems for thermodynamics

    Get PDF
    Improved understanding of molecular systems has only emphasised the sophistication of networks within the cell. Simultaneously, the advance of nucleic acid nanotechnology, a platform within which reactions can be exquisitely controlled, has made the development of artificial architectures and devices possible. Vital to this progress has been a solid foundation in the thermodynamics of molecular systems. In this pedagogical review and perspective, I will discuss how thermodynamics determines both the overall potential of molecular networks, and the minute details of design. I will then argue that, in turn, the need to understand molecular systems is helping to drive the development of theories of thermodynamics at the microscopic scale

    Edge-effects dominate copying thermodynamics for finite-length molecular oligomers

    Get PDF
    A signature feature of living systems is their ability to produce copies of information-carrying molecular templates such as DNA. These copies are made by assembling a set of monomer molecules into a linear macromolecule with a sequence determined by the template. The copies produced have a finite length – they are often “oligomers”, or short polymers – and must eventually detach from their template. We explore the role of the resultant initiation and termination of the copy process in the thermodynamics of copying. By splitting the free-energy change of copy formation into informational and chemical terms, we show that, surprisingly, copy accuracy plays no direct role in the overall thermodynamics. Instead, finite-length templates function as highly-selective engines that interconvert chemical and information-based free energy stored in the environment; it is thermodynamically costly to produce outputs that are more similar to the oligomers in the environment than sequences obtained by randomly sampling monomers. In contrast to previous work that neglects separation, any excess free energy stored in correlations between copy and template sequences is lost when the copy fully detaches and mixes with the environment; these correlations therefore do not feature in the overall thermodynamics. Previously-derived constraints on copy accuracy therefore only manifest as kinetic barriers experienced while the copy is template attached; these barriers are easily surmounted by shorter oligomers

    Designing the Optimal Bit: Balancing Energetic Cost, Speed and Reliability

    Get PDF
    We consider the technologically relevant costs of operating a reliable bit that can be erased rapidly. We find that both erasing and reliability times are non-monotonic in the underlying friction, leading to a trade-off between erasing speed and bit reliability. Fast erasure is possible at the expense of low reliability at moderate friction, and high reliability comes at the expense of slow erasure in the underdamped and overdamped limits. Within a given class of bit parameters and control strategies, we define "optimal" designs of bits that meet the desired reliability and erasing time requirements with the lowest operational work cost. We find that optimal designs always saturate the bound on the erasing time requirement, but can exceed the required reliability time if critically damped. The non-trivial geometry of the reliability and erasing time-scales allows us to exclude large regions of parameter space as sub-optimal. We find that optimal designs are either critically damped or close to critical damping under the erasing procedure

    A universal method for analyzing copolymer growth

    Get PDF
    Polymers consisting of more than one type of monomer, known as copolymers, are vital to both living and synthetic systems. Copolymerisation has been studied theoretically in a number of contexts, often by considering a Markov process in which monomers are added or removed from the growing tip of a long copolymer. To date, the analysis of the most general models of this class has necessitated simulation. We present a general method for analysing such processes without resorting to simulation. Our method can be applied to models with an arbitrary network of sub-steps prior to addition or removal of a monomer, including non-equilibrium kinetic proofreading cycles. Moreover, the approach allows for a dependency of addition and removal reactions on the neighbouring site in the copolymer, and thermodynamically self-consistent models in which all steps are assumed to be microscopically reversible. Using our approach, thermodynamic quantities such as chemical work; kinetic quantities such as time taken to grow; and statistical quantities such as the distribution of monomer types in the growing copolymer can be derived either analytically or numerically directly from the model definition

    Evaluating DFHBI-responsive RNA light-up aptamers as fluorescent reporters for gene expression

    Get PDF
    Protein-based fluorescent reporters have been widely used to characterize and localize biological processes in living cells. However, these reporters may have certain drawbacks for some applications, such as transcription-based studies or biological interactions with fast dynamics. In this context, RNA nanotechnology has emerged as a promising alternative, suggesting the use of functional RNA molecules as transcriptional fluorescent reporters. RNA-based aptamers can bind to nonfluorescent small molecules to activate their fluorescence. However, their performance as reporters of gene expression in living cells has not been fully characterized, unlike protein-based reporters. Here, we investigate the performance of three RNA light-up aptamers─F30-2xdBroccoli, tRNA-Spinach, and Tornado Broccoli─as fluorescent reporters for gene expression in Escherichia coli and compare them to a protein reporter. We examine the activation range and effect on the cell growth of RNA light-up aptamers in time-course experiments and demonstrate that these aptamers are suitable transcriptional reporters over time. Using flow cytometry, we compare the variability at the single-cell level caused by the RNA fluorescent reporters and protein-based reporters. We found that the expression of RNA light-up aptamers produced higher variability in a population than that of their protein counterpart. Finally, we compare the dynamical behavior of these RNA light-up aptamers and protein-based reporters. We observed that RNA light-up aptamers might offer faster dynamics compared to a fluorescent protein in E. coli. The implementation of these transcriptional reporters may facilitate transcription-based studies, gain further insights into transcriptional processes, and expand the implementation of RNA-based circuits in bacterial cells

    DNA bipedal motor walking dynamics: an experimental and theoretical study of the dependency on step size

    No full text
    We present a detailed coarse-grained computer simulation and single molecule fluorescence study of the walking dynamics and mechanism of a DNA bipedal motor striding on a DNA origami. In particular, we study the dependency of the walking efficiency and stepping kinetics on step size. The simulations accurately capture and explain three different experimental observations. These include a description of the maximum possible step size, a decrease in the walking efficiency over short distances and a dependency of the efficiency on the walking direction with respect to the origami track. The former two observations were not expected and are non-trivial. Based on this study, we suggest three design modifications to improve future DNA walkers. Our study demonstrates the ability of the oxDNA model to resolve the dynamics of complex DNA machines, and its usefulness as an engineering tool for the design of DNA machines that operate in the three spatial dimensions

    Characterizing the bending and flexibility induced by bulges in DNA duplexes

    Get PDF
    Advances in DNA nanotechnology have stimulated the search for simple motifs that can be used to control the properties of DNA nanostructures. One such motif, which has been used extensively in structures such as polyhedral cages, two-dimensional arrays, and ribbons, is a bulged duplex, that is, two helical segments that connect at a bulge loop. We use a coarse-grained model of DNA to characterize such bulged duplexes. We find that this motif can adopt structures belonging to two main classes: one where the stacking of the helices at the center of the system is preserved, the geometry is roughly straight, and the bulge is on one side of the duplex and the other where the stacking at the center is broken, thus allowing this junction to act as a hinge and increasing flexibility. Small loops favor states where stacking at the center of the duplex is preserved, with loop bases either flipped out or incorporated into the duplex. Duplexes with longer loops show more of a tendency to unstack at the bulge and adopt an open structure. The unstacking probability, however, is highest for loops of intermediate lengths, when the rigidity of single-stranded DNA is significant and the loop resists compression. The properties of this basic structural motif clearly correlate with the structural behavior of certain nano-scale objects, where the enhanced flexibility associated with larger bulges has been used to tune the self-assembly product as well as the detailed geometry of the resulting nanostructures. We further demonstrate the role of bulges in determining the structure of a "Z-tile," a basic building block for nanostructures

    Second law, entropy production, and reversibility in thermodynamics of information

    Full text link
    We present a pedagogical review of the fundamental concepts in thermodynamics of information, by focusing on the second law of thermodynamics and the entropy production. Especially, we discuss the relationship among thermodynamic reversibility, logical reversibility, and heat emission in the context of the Landauer principle and clarify that these three concepts are fundamentally distinct to each other. We also discuss thermodynamics of measurement and feedback control by Maxwell's demon. We clarify that the demon and the second law are indeed consistent in the measurement and the feedback processes individually, by including the mutual information to the entropy production.Comment: 43 pages, 10 figures. As a chapter of: G. Snider et al. (eds.), "Energy Limits in Computation: A Review of Landauer's Principle, Theory and Experiments

    The importance of thermodynamics for molecular systems, and the importance of molecular systems for thermodynamics

    Get PDF
    corecore